978 resultados para DNA copies number variation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Genetic factors predisposing individuals to cancer remain elusive in the majority of patients with a familial or clinical history suggestive of hereditary breast cancer. Germline DNA copy number variation (CNV) has recently been implicated in predisposition to cancers such as neuroblastomas as well as prostate and colorectal cancer. We evaluated the role of germline CNVs in breast cancer susceptibility, in particular those with low population frequencies (rare CNVs), which are more likely to cause disease." Methods: Using whole-genome comparative genomic hybridization on microarrays, we screened a cohort of women fulfilling criteria for hereditary breast cancer who did not carry BRCA1/BRCA2 mutations. Results: The median numbers of total and rare CNVs per genome were not different between controls and patients. A total of 26 rare germline CNVs were identified in 68 cancer patients, however, a proportion that was significantly different (P = 0.0311) from the control group (23 rare CNVs in 100 individuals). Several of the genes affected by CNV in patients and controls had already been implicated in cancer. Conclusions: This study is the first to explore the contribution of germline CNVs to BRCA1/2-negative familial and early-onset breast cancer. The data suggest that rare CNVs may contribute to cancer predisposition in this small cohort of patients, and this trend needs to be confirmed in larger population samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The chief goal of this study was to analyze copy number variation (CNV) in breast cancer tumors from 25 African American women with early stage breast cancer (BC) using molecular inversion probes (MIP) in order to: (1) compare the degree of CNV in tumors compared to normal lymph nodes, and (2) determine whether gains and/or losses of genes in specific chromosomes differ between pathologic subtypes of breast cancer defined by known prognostic markers, (3) determine whether gains/losses in CN are associated with known oncogenes or tumor suppressor genes, and (4) determine whether increased gains/losses in CN for specific chromosomes were associated with differences in breast cancer recurrence. ^ Methods. Twenty to 37 nanograms of DNA extracted from 25 formalin-fixed paraffin embedded (FFPE) tumor samples and matched normal lymph nodes were added to individual tubes. Oligonucleotide probes with recognition sequences at each terminus were hybridized with a genomic target sequence to form a circular structure. Probes are released from genomic DNA obtained from FFPE samples, and those which have been correctly "circularized" in the proper allele/nucleotide reaction combination are amplified using polymerase chain reaction (PCR) primers. Amplicons were fluorescently labeled and the tag sequences released from the genome homology regions by treatment with uracil-N-glycosylase to cleave the probe at the site where uracils are present, and detected using a complementary tag array developed by Affymetrix. ^ Results. Analysis of CN gains and losses from tumors and normal tissues showed marked differences in tumors with numerous chromosomes affected. Similar changes were not observed in normal lymph nodes. When tumors were stratified into four groups based on expression or lack of expression of the estrogen receptor and HER2/neu, distinct patterns of CNV for different chromosomes were observed. Gains or losses in CN for specific chromosomes correlated with amplifications/deletions of particular oncogenes or tumor suppressor genes (i.e. such as found on chromosome 17) known to be associated with aggressive tumor phenotype and poor prognosis. There was a trend for increases in CN observed for chromosome 17 to correlate inversely with time to recurrence of BC (p=0.14 for trend). CNV was also observed for chromosomes 5, 8, 10, 11, and 16, which are known sites for several breast cancer susceptibility alleles. ^ Conclusions. This study is the first to validate the MIP technique, to correlate differences in gene expression with known prognostic tumor markers, and to correlate significant increases/decreases in CN with known tumor markers associated with prognosis. The results of this study may have far reaching public health implications towards identifying new high-risk groups based on genomic differences in CNP, both with respect to prognosis and response to therapy, and to eventually identify new therapeutic targets for prevention and treatment of this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Deficiência Intelectual (DI) é uma condição complexa, que acomete 2-3% da população mundial, constituindo um importante problema de saúde pública. No entanto, uma parcela significativa dos casos de DI permanece sem um diagnóstico definitivo, o que demonstra que muitos fatores etiológicos associados a esta condição ainda precisam ser elucidados. Há um consenso de que o número de homens com DI supera em 30% o número de mulheres, um achado atribuído à presença de mutações em genes localizados no cromossomo X. Dentre os genes presentes neste cromossomo que são expressos no cérebro, o Jumonji AT-rich interactive domain 1C (JARID1C) foi identificado como um potencial candidato a estar relacionado à DI ligada ao X (DILX). O gene JARID1C codifica uma desmetilase da lisina 4 da histona H3 (H3K4), imprescindível para a regulação epigenética. Tão importante quanto o estudo do gene JARID1C em pacientes com DI é a busca por variações no número de cópias gênicas (VNCs) em regiões cromossômicas subteloméricas. Genes relacionados ao desenvolvimento cerebral são enriquecidos em VNCs e as regiões subteloméricas são mais susceptíveis à formação destes rearranjos. Diante do exposto, neste estudo, investigamos mutações no gene JARID1C (exons 3, 4, 5, 8, 10, 14 e 23) em 148 homens portadores de DI pertencentes a famílias com padrão de segregação sugestivo de DILX. Paralelamente, analisamos VNCs subteloméricas em 174 homens com DI familiar de etiologia idiopática, independente do padrão de segregação. Para todos os indivíduos selecionados, amostras de DNA genômico foram extraídas a partir de sangue periférico e alterações genéticas frequentemente relacionadas à DI foram previamente excluídas (expansões trinucleotídicas nos loci FRAXA e FRAXE e mutações nos genes MECP2 e ARX). A análise do gene JARID1C foi realizada pela técnica de PCR, seguida da análise dos produtos amplificados por sequenciamento. Foram identificadas quatro variantes silenciosas (c.564G>A, c.633G>C, c.1884G>A, c.1902C>A). Através da análise in silico de sequências exônicas acentuadoras de splicing (ESEs) localizadas nas posições das variantes encontradas, foi possível classificar a variante c.1884G>A como neutra e as três variantes restantes como possíveis criadoras de ESEs. Já para a investigação das VNCs subteloméricas, foi utilizada a metodologia de Multiplex Ligation-dependent Probe Amplification (MLPA), capaz de identificar microdeleções e microduplicações nas 46 regiões subteloméricas. Para este fim, inicialmente, os indivíduos foram investigados pelo kit de MLPA P036, enquanto que para aqueles que exibiram alterações também foi utilizado o kit P070. A validação das VNCs encontradas foi realizada por PCR quantitativo em Tempo Real. A análise por MLPA revelou um indivíduo apresentando duas deleções (9p e 13q), um indivíduo apresentando duas amplificações (1p e 2p), dois indivíduos apresentando uma deleção e uma amplificação (18p e 18q; 4p e 8p), quatro indivíduos portadores de uma deleção cada (10p, 20p, 3q e 22q) e dois indivíduos com uma amplificação cada (7q e 20p). Algumas das alterações subteloméricas encontradas (2,87%) representam VNCs de relevância clínica para o estudo da DI, reforçando a importância do rastreamento de rotina de VNCs subteloméricas na DI familiar. Consideramos que a elucidação de novos genes ou mecanismos moleculares diretamente relacionados à DI é um caminho promissor e urgente para o estabelecimento de novas estratégias terapêuticas possíveis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease is a complex and progressive neurodegenerative disease leading to loss of memory, cognitive impairment, and ultimately death. To date, six large-scale genome-wide association studies have been conducted to identify SNPs that influence disease predisposition. These studies have confirmed the well-known APOE epsilon4 risk allele, identified a novel variant that influences disease risk within the APOE epsilon4 population, found a SNP that modifies the age of disease onset, as well as reported the first sex-linked susceptibility variant. Here we report a genome-wide scan of Alzheimer's disease in a set of 331 cases and 368 controls, extending analyses for the first time to include assessments of copy number variation. In this analysis, no new SNPs show genome-wide significance. We also screened for effects of copy number variation, and while nothing was significant, a duplication in CHRNA7 appears interesting enough to warrant further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Neurociências), Universidade de Lisboa, Faculdade de Medicina, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Williams-Beuren syndrome (WBS; OMIM 194050) is caused by a hemizygous contiguous gene microdeletion at 7q11.23. Supravalvular aortic stenosis (SVAS), mental retardation, and overfriendliness comprise typical symptoms of WBS. Although fluorescence in situ hybridization (FISH) is considered the gold standard technique, the microsatellite DNA markers and multiplex ligation-dependent probe amplification (MLPA) could be used for to confirm the diagnosis of WBS. Results We have evaluated a total cohort of 88 patients with a suspicion clinical diagnosis of WBS using a collection of five markers (D7S1870, D7S489, D7S613, D7S2476, and D7S489_A) and a commercial MLPA kit (P029). The microdeletion was present in 64 (72.7%) patients and absent in 24 (27.3%) patients. The parental origin of deletion was maternal in 36 of 64 patients (56.3%) paternal in 28 of 64 patients (43.7%). The deletion size was 1.55 Mb in 57 of 64 patients (89.1%) and 1.84 Mb in 7 of 64 patients (10.9%). The results were concordant using both techniques, except for four patients whose microsatellite markers were uninformative. There were no clinical differences in relation to either the size or parental origin of the deletion. Conclusion MLPA was considered a faster and more economical method in a single assay, whereas the microsatellite markers could determine both the size and parental origin of the deletion in WBS. The microsatellite marker and MLPA techniques are effective in deletion detection in WBS, and both methods provide a useful diagnostic strategy mainly for developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ewing sarcoma is an aggressive and poorly differentiated malignancy of bone and soft tissue. It primarily affects children, adolescents, and young adults, with a slight male predominance. It is characterized by a translocation between chromosomes 11 and 22 resulting in the EWSR1-FLI1fusion transcription factor. The aim of this study is to identify putative Ewing sarcoma target genes through an integrative analysis of three microarray data sets. Array comparative genomic hybridization is used to measure changes in DNA copy number, and analyzed to detect common chromosomal aberrations. mRNA and miRNA microarrays are used to measure expression of protein-coding and miRNA genes, and these results integrated with the copy number data. Chromosomal aberrations typically contain also bystanders in addition to the driving tumor suppressor and oncogenes, and integration with expression helps to identify the true targets. Correlation between expression of miRNAs and their predicted target mRNAs is also evaluated to assess the results of post-transcriptional miRNA regulation on mRNA levels. The highest frequencies of copy number gains were identified in chromosome 8, 1q, and X. Losses were most frequent in 9p21.3, which also showed an enrichment of copy number breakpoints relative to the rest of the genome. Copy number losses in 9p21.3 were found have a statistically significant effect on the expression of MTAP, but not on CDKN2A, which is a known tumor-suppressor in the same locus. MTAP was also down-regulated in the Ewing sarcoma cell lines compared to mesenchymal stem cells. Genes exhibiting elevated expression in association with copy number gains and up-regulation compared to the reference samples included DCAF7, ENO2, MTCP1, andSTK40. Differentially expressed miRNAs were detected by comparing Ewing sarcoma cell lines against mesenchymal stem cells. 21 up-regulated and 32 down-regulated miRNAs were identified, includingmiR-145, which has been previously linked to Ewing sarcoma. The EWSR1-FLI1 fusion gene represses miR-145, which in turn targets FLI1 forming a mutually repressive feedback loop. In addition higher expression linked to copy number gains and compared to mesenchymal stem cells, STK40 was also found to be a target of four different miRNAs that were all down-regulated in Ewing sarcoma cell lines compared to the reference samples. SLCO5A1 was identified as the only up-regulated gene within a frequently gained region in chromosome 8. This region was gained in over 90 % of the cell lines, and also with a higher frequency than the neighboring regions. In addition, SLCO5A1 was found to be a target of three miRNAs that were down-regulated compared to the mesenchymal stem cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies. Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome, including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions, which may cause deviation from HWE. Results We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0~1%. Conclusions Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the observed allele frequency of the SNP, sample size and the significance level of HWE testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the study of complex genetic diseases, the identification of subgroups of patients sharing similar genetic characteristics represents a challenging task, for example, to improve treatment decision. One type of genetic lesion, frequently investigated in such disorders, is the change of the DNA copy number (CN) at specific genomic traits. Non-negative Matrix Factorization (NMF) is a standard technique to reduce the dimensionality of a data set and to cluster data samples, while keeping its most relevant information in meaningful components. Thus, it can be used to discover subgroups of patients from CN profiles. It is however computationally impractical for very high dimensional data, such as CN microarray data. Deciding the most suitable number of subgroups is also a challenging problem. The aim of this work is to derive a procedure to compact high dimensional data, in order to improve NMF applicability without compromising the quality of the clustering. This is particularly important for analyzing high-resolution microarray data. Many commonly used quality measures, as well as our own measures, are employed to decide the number of subgroups and to assess the quality of the results. Our measures are based on the idea of identifying robust subgroups, inspired by biologically/clinically relevance instead of simply aiming at well-separated clusters. We evaluate our procedure using four real independent data sets. In these data sets, our method was able to find accurate subgroups with individual molecular and clinical features and outperformed the standard NMF in terms of accuracy in the factorization fitness function. Hence, it can be useful for the discovery of subgroups of patients with similar CN profiles in the study of heterogeneous diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le caryotype moléculaire permet d’identifier un CNV chez 10-14% des individus atteints de déficience intellectuelle et/ou de malformations congénitales. C’est pourquoi il s’agit maintenant de l’analyse de première intention chez ces patients. Toutefois, le rendement diagnostique n’est pas aussi bien défini en contexte prénatal et l’identification de CNVs de signification clinique incertaine y est particulièrement problématique à cause du risque d’interruption de grossesse. Nous avons donc testé 49 fœtus avec malformations majeures et un caryotype conventionnel normal avec une micropuce CGH pangénomique, et obtenu un diagnostic dans 8,2% des cas. Par ailleurs, des micropuces à très haute résolution combinant le caryotype moléculaire et le génotypage de SNPs ont récemment été introduites sur le marché. En plus d’identifier les CNVs, ces plateformes détectent les LOHs, qui peuvent indiquer la présence d’une mutation homozygote ou de disomie uniparentale. Ces anomalies pouvant être associées à la déficience intellectuelle ou à des malformations, leur détection est particulièrement intéressante pour les patients dont le phénotype reste inexpliqué. Cependant, le rendement diagnostique de ces plateformes n’est pas confirmé, et l’utilité clinique réelle des LOHs n’est toujours pas établie. Nous avons donc testé 21 enfants atteints de déficience intellectuelle pour qui les méthodes standards d’analyse génétique n’avaient pas résulté en un diagnostic, et avons pu faire passer le rendement diagnostique de 14,3% à 28,6% grâce à l’information fournie par les LOHs. Cette étude démontre l’utilité clinique d’une micropuce CGH pangénomique chez des fœtus avec malformations, de même que celle d’une micropuce SNP chez des enfants avec déficience intellectuelle.